ANALISIS POTENSI E-COMMERCE MELALUI IMPLEMENTASI DATA MINING DALAM PERPAJAKAN: SEBUAH STUDI KOMPARASI
Keywords:
E-Commerce, Data Mining, Tax, Digital EconomyAbstract
The digital economy is experiencing quite rapid development, not to mention the e-commerce sector which is showing growth. From 2025 to 2030 it is projected that there will be a three-fold increase, mainly from the e-commerce sector. A number of transactions and data are abundant, causing DGT to have difficulty processing data. In addition, determining the involvement of e-commerce actors who are not easily detected is a challenge in itself. Based on these problems, this study raises the application of data mining in taxation to analyze the potential of e-commerce through comparative studies. This study uses a qualitative descriptive approach with literature study and interview methods through the acquisition of primary data from informants and secondary data through relevant literature sources. This study uses content analysis techniques. The results of the study show that Indonesia needs to adopt a data mining system implemented by several countries based on benchmark analysis. Comparison and effectiveness of data mining, especially in preventing, detecting, and overcoming tax evasion behavior by taxpayers. In addition, reviewing the potential to be implemented in Indonesia is very large. Application of data in large sets will be processed using machine learning, random forest, artificial intelligence, and data mining. Based on analysis with other countries, this method minimizes the number of problems in computerized systems
References
Aminudin, M. (2015). Data Mining Aplikasi Analisis Asosiasi Data Pasien Menggunakan Algoritma Apriori Di Puskesmas Kabupaten ‘X’ (Doctoral dissertation, Universitas Muhammadiyah Gresik).
Aprilia, N. D. (2021). PERKEMBANGAN EKONOMI DIGITAL INDONESIA. Ekonomi Pertahanan, 7(2), 245-259.
Ardiansyah, A. H., Nugroho, W., Alfiyah, N. H., Handoko, R. A., & Bakhtiar, M. A. (2020, August). Penerapan Data Mining Menggunakan Metode Clustering untuk Menentukan Status Provinsi di Indonesia 2020. In Prosiding SEMNAS INOTEK (Seminar Nasional Inovasi Teknologi) (Vol. 4, No. 3, pp. 329-333).
Asfar, I. T., & Taufan, I. (2019). Analisis Naratif, Analisis Konten, Dan Analisis Semiotik (Penelitian Kualitatif). no. January, 1-13.
Bergman, M. (2010). Tax evasion and the rule of law in Latin America: the political culture of cheating and compliance in Argentina and Chile. Penn State Press.
Choi, D. Bin., Jo, In. S., & Park, Y. B. (2019). Taxation Analysis Using Machine Learning. Journal of Semiconductor Display Technology, 18(2), 73-77.
Dharmawan, Y. E., & Adi, P. H. (2021). Kompleksitas Pajak, Moral Wajib Pajak dan Norma Subyektif Terhadap Kepatuhan Perpajakan. Jurnal Penelitian dan Pengembangan Sains dan Humaniora, 5(2), 212-219.
Djufri, M (2020). Penerapan Teknik Web Scraping Untuk Penggalian Potensi Pajak (Studi Kasus Pada Online Market Place Tokopedia, Shopee Dan Bukalapak). Jurnal BPPK: Badan Pendidikan Dan Pelatihan Keuangan, 13(2), 65-75.
Faúndez-Ugalde, A., Mellado-Silva, R., & Aldunate-Lizana, E. (2020). Use of artificial intelligence by tax administrations: An analysis regarding taxpayers’ rights in Latin American countries. Computer Law & Security Review, 38, 105441.
Francesco, L., Alessio I., Rita, G., Bianca, R.,, Laura, P. (2017). Requalifying public buildings and utilities using a group decision support system. Journal of Cleaner Production, 164, 1081-1092.
García, V., & Valderrama, J. (2007). Toward a more efficient tax policy. An Opportunity for a Different, 103.
Gonzales, P. C., & Velasquez, Juan. D. (2013). Expert Systems with Applications. Elsevier, 40, 1427-1436.
Google, Temasek, dan Bain & Company. (2022). e-Conomy SEA 2022 Report.
Hasanah, R. A. (2016). Pengaruh pemahaman peraturan pajak, tarif pajak, lingkungan, dan kesadaran wajib pajak terhadap kepatuhan wajib pajak pengguna e-commerce: Studi Kasus Pada Pengusaha Online Shopping (Doctoral dissertation, Universitas Islam Negeri Maulana Malik Ibrahim).
He, L., & He, Y. (2021). Cross-border E-commerce logistics development model based on data mining and QoS. Proceedings of the 6th International Conference on Communication and Electronics Systems, 1376-1379.
Huang, M. J., & Lin, S. M. (2009). Tax evasion and audit selection. The International Journal of Accounting Studies, 48, 35-66.
Hwang, B. G., Shan, M., & Looi, K. Y. (2018). Knowledge-based decision support system for prefabricated prefinished volumetric construction. Automation in Construction, 94, 168-178.
Kumar, T. S. (2020). Data mining based marketing decision support system using hybrid machine learning algorithm. Journal of Artificial Intelligence, 2(03), 185-193.
Lin, C. C., Chiu, A. A., Huang, S. Y., & Yen, D. C. (2015). Detecting the financial statement fraud: The analysis of the differences between data mining techniques and experts’ judgments. Knowledge-Based Systems, 89, 459-470.
Mojahedi, H., Babazadeh Sangar, A., & Masdari, M. (2022). Towards Tax Evasion Detection Using Improved Particle Swarm Optimization Algorithm. Mathematical Problems in Engineering, 2022.
Nurdin, N., & Astika, D. (2019). Penerapan Data Mining Untuk Menganalisis Penjualan Barang Dengan Menggunakan Metode Apriori Pada Supermarket Sejahtera Lhokseumawe. TECHSI-Jurnal Teknik Informatika, 7(1), 132-155.
Pan, H., & Zhou, H. (2020). Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce. Electronic Commerce Research, 20(2), 297-320.
Pazo, J. O., & Hallo, Maria. (2019). Data Mining Techniques Applied in Tax Administrations: A Literature Review. IEEE, 224-229.
Prastyaningtyas, E. W. (2019). Dampak Ekonomi Digital bagi Perekonomian Indonesia. In seminar nasional manajemen, Ekonomi, Akuntansi (Vol. 1, No. 1, pp. 103-108).
Pusdiklat Pajak. (2019). E-Commerce Dalam Pajak Penghasilan. Badan Pendidikan dan Pelatihan Keuangan: Jakarta Selatan.
Putri, M. A., Rahaningsih, N., Basysyar, F. M., & Nurdiawan, O. (2022). Penerapan Data Mining Menggunakan Metode Clustering Untuk Mengetahui Kelompok Kepatuhan Wajib Pajak Bumi dan Bangunan. Jurnal Accounting Information System (AIMS), 5(2), 145-156.
Rad, M. S., & Shahbahrami, A. (2015, December). High performance implementation of tax fraud detection algorithm. In 2015 Signal Processing and Intelligent Systems Conference (SPIS) (pp. 6-9). IEEE.
S & Y. (2022). Personal communication, August 10, 2022.
Sari, R. W., & Hartama, D. (2018, July). Data Mining: Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi. In Seminar Nasional Sains dan Teknologi Informasi (SENSASI), 1(1).
Semiawan, C. R. (2010). Metode penelitian kualitatif. Grasindo.
Simanjuntak, H. E., & Windarto, W. (2020). Analisa Data Mining Menggunakan Frequent Pattern Growth pada Data Transaksi Penjualan PT Mora Telematika Indonesia untuk Rekomendasi Strategi Pemasaran Produk Internet. Jurnal Media Informatika Budidarma, 4(4), 914-923.
Suandy, E. (2008). Perencanaan Pajak (ed. 4) HVS. Penerbit Salemba.
Suhada, S., Ginting, G. L., & Hondro, R. K. (2021). Penerapan Data Mining Untuk Memprediksi Besarnya Pembayaran Pajak Kendaraan Pada:(Badan Pengelolaan Pajak Dan Retribusi Daerah Upt Samsat Medan Selatan) Menggunakan Algoritma Expectation Maximization. Bulletin of Information Technology (BIT), 2(2), 69-75.
Tang, Y., Li, Y., Qu, M., & Yang, Q. (2021, December). Research on Risk Early Warning Methods of Enterprise Finance and Taxation Management Based on Big Data Mining. In 2021 International Conference on High Performance Big Data and Intelligent Systems (HPBD&IS) (pp. 157-161). IEEE.
Utomo, D. P., & Purba, B. (2019, September). Penerapan data mining pada data gempa bumi terhadap potensi tsunami di Indonesia. In Prosiding Seminar Nasional Riset Information Science (SENARIS) (Vol. 1, pp. 846-853).
Wang, J., Yu, X., Li, P., & Xia, J. (2016). The research and application of tax risk identification based on pso-bp algorithm. International Conference on Audio, Language and Image Processing (ICALIP), 120–125.
Wicaksono, B. (2018). Meningkatkan potensi pajak UMKM online melalui data e-commerce. Simposium Nasional Keuangan Negara, 141-161.
Wu, R. S., Ou, C. S., Lin, H. Y., Chang, S. I., & Yen, D. C. (2012). Using data mining technique to enhance tax evasion detection performance. Expert Systems with Applications, 39(10), 8769-8777.
Zed, M. (2004). Metode penelitian kepustakaan. Yayasan Obor Indonesia.
Zhao, L., & Jin, W. (2022). Application of Web Data Mining and Information Combination Technology in E-commerce. Proceedings of the International Conference on Electronics and Renewable Systems, 1636-163