AUDIT FORENSIK BERBASIS DATA ANALYTICS: INOVASI DALAM MENGIDENTIFIKASI KECURANGAN DI ERA DIGITAL

Authors

  • Sitti Jam’iah Fakultas Ekonomi dan Bisnis Universitas Hasanuddin
  • A. indrianti ismunandar Fakultas Ekonomi dan Bisnis Universitas Hasanuddin
  • Syamsuddin Syamsuddin Fakultas Ekonomi dan Bisnis Universitas Hasanuddin
  • Amiruddin Amiruddin Fakultas Ekonomi dan Bisnis Universitas Hasanuddin

Keywords:

Audit Forensik, Data Analytics, Deteksi Kecurangan, Inovasi Digital

Abstract

Audit forensik berbasis data analytics (AFDA) telah menjadi inovasi penting dalam mendeteksi dan mencegah kecurangan di era digital. Dalam konteks meningkatnya volume data dan kompleksitas modus operandi fraud, AFDA menawarkan kemampuan untuk menganalisis data dalam jumlah besar secara efisien dan efektif. Studi ini bertujuan untuk mengkaji perkembangan terkini penerapan AFDA dalam audit forensik melalui pendekatan systematic literature review (SLR) menggunakan metode PRISMA. Hasil penelitian menunjukkan bahwa penggunaan data analytics meningkatkan akurasi dan kecepatan dalam mendeteksi anomali keuangan, namun menghadapi tantangan seperti kurangnya kompetensi auditor dalam teknologi dan keterbatasan integrasi sistem. Studi ini merekomendasikan peningkatan pelatihan teknologi bagi auditor dan penyusunan kebijakan pendukung untuk mempercepat adopsi AFDA di Indonesia. Artikel ini memberikan wawasan strategis bagi akademisi, praktisi, dan pembuat kebijakan dalam mengoptimalkan audit forensik berbasis data analytics.

References

R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, I. A. Targio Hashem, E. Ahmed, and M. Imran, “Real-time big data processing for anomaly detection: A Survey,” Int. J. Inf. Manage., vol. 45, pp. 289–307, Apr. 2019, doi: 10.1016/j.ijinfomgt.2018.08.006.

K. (Lek) Sanoran and J. Ruangprapun, “Initial Implementation of Data Analytics and Audit Process Management,” Sustainability, vol. 15, no. 3, p. 1766, Jan. 2023, doi: 10.3390/su15031766.

Y. Wei, K.-P. Chow, and S.-M. Yiu, “Insider threat prediction based on unsupervised anomaly detection scheme for proactive forensic investigation,” Forensic Sci. Int. Digit. Investig., vol. 38, p. 301126, Oct. 2021, doi: 10.1016/j.fsidi.2021.301126.

E. Casey and T. R. Souvignet, “Digital transformation risk management in forensic science laboratories,” Forensic Sci. Int., vol. 316, p. 110486, Nov. 2020, doi: 10.1016/j.forsciint.2020.110486.

P. M. Shakeel, S. Baskar, H. Fouad, G. Manogaran, V. Saravanan, and C. E. Montenegro-Marin, “Internet of things forensic data analysis using machine learning to identify roots of data scavenging,” Futur. Gener. Comput. Syst., vol. 115, pp. 756–768, Feb. 2021, doi: 10.1016/j.future.2020.10.001.

U. Islam et al., “Investigating the Effectiveness of Novel Support Vector Neural Network for Anomaly Detection in Digital Forensics Data,” Sensors, vol. 23, no. 12, p. 5626, Jun. 2023, doi: 10.3390/s23125626.

F. De Santis and G. D’Onza, “Big data and data analytics in auditing: in search of legitimacy,” Meditari Account. Res., vol. 29, no. 5, pp. 1088–1112, Sep. 2021, doi: 10.1108/MEDAR-03-2020-0838.

H. Kwon, S. Lee, and D. Jeong, “User profiling via application usage pattern on digital devices for digital forensics,” Expert Syst. Appl., vol. 168, p. 114488, Apr. 2021, doi: 10.1016/j.eswa.2020.114488.

O. M. Horani, A. Khatibi, A. R. AL-Soud, J. Tham, and A. S. Al-Adwan, “Determining the Factors Influencing Business Analytics Adoption at Organizational Level: A Systematic Literature Review,” Big Data Cogn. Comput., vol. 7, no. 3, p. 125, Jun. 2023, doi: 10.3390/bdcc7030125.

M. L. Rethlefsen et al., “PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews,” Syst. Rev., vol. 10, no. 1, p. 39, Jan. 2021, doi: 10.1186/s13643-020-01542-z.

A. Mutemi and F. Bacao, “E-Commerce Fraud Detection Based on Machine Learning Techniques: Systematic Literature Review,” Big Data Min. Anal., vol. 7, no. 2, pp. 419–444, Jun. 2024, doi: 10.26599/BDMA.2023.9020023.

S. Castillo and P. Grbovic, “The APISSER Methodology for Systematic Literature Reviews in Engineering,” IEEE Access, vol. 10, pp. 23700–23707, 2022, doi: 10.1109/ACCESS.2022.3148206.

M. Abelha, S. Fernandes, D. Mesquita, F. Seabra, and A. T. Ferreira-Oliveira, “Graduate Employability and Competence Development in Higher Education—A Systematic Literature Review Using PRISMA,” Sustainability, vol. 12, no. 15, p. 5900, Jul. 2020, doi: 10.3390/su12155900.

L. Zheng et al., “A review of auditing techniques for the Unified Medical Language System,” J. Am. Med. Informatics Assoc., vol. 27, no. 10, pp. 1625–1638, Oct. 2020, doi: 10.1093/jamia/ocaa108.

M. M. Ncube and P. Ngulube, “A Systematic Review of Postgraduate Programmes Concerning Ethical Imperatives of Data Privacy in Sustainable Educational Data Analytics,” Sustainability, vol. 16, no. 15, p. 6377, Jul. 2024, doi: 10.3390/su16156377.

A. N. Bahasoan, Muhammad, and Marsudi, “Regional Autonomy and Poverty in Indonesia: A Literature Review,” East Asian J. Multidiscip. Res., vol. 2, no. 4, pp. 1613–1624, Apr. 2023, doi: 10.55927/eajmr.v2i4.3869.

P. Galetsi, K. Katsaliaki, and S. Kumar, “Values, challenges and future directions of big data analytics in healthcare: A systematic review,” Soc. Sci. Med., vol. 241, p. 112533, Nov. 2019, doi: 10.1016/j.socscimed.2019.112533.

Y. A. A. Hezam, L. Anthonysamy, and S. D. K. Suppiah, “Big Data Analytics and Auditing: A Review and Synthesis of Literature,” Emerg. Sci. J., vol. 7, no. 2, pp. 629–642, Feb. 2023, doi: 10.28991/ESJ-2023-07-02-023.

B. Ballou, J. H. Grenier, and A. Reffett, “Stakeholder Perceptions of Data and Analytics Based Auditing Techniques,” Account. Horizons, vol. 35, no. 3, pp. 47–68, Sep. 2021, doi: 10.2308/HORIZONS-19-116.

B. N. Baaske, M. Eulerich, and D. A. Wood, “Improving Audit Quality with Data Analytic Visualizations: The Importance of Spatial Abilities and Feedback in Anomaly Identification,” Account. Horizons, pp. 1–13, Jan. 2024, doi: 10.2308/HORIZONS-2023-073.

M. C. Massi, F. Ieva, and E. Lettieri, “Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases,” BMC Med. Inform. Decis. Mak., vol. 20, no. 1, p. 160, Dec. 2020, doi: 10.1186/s12911-020-01143-9.

W. G. No, K. (Kari) Lee, F. Huang, and Q. Li, “Multidimensional Audit Data Selection (MADS): A Framework for Using Data Analytics in the Audit Data Selection Process,” Account. Horizons, vol. 33, no. 3, pp. 127–140, Sep. 2019, doi: 10.2308/acch-52453.

L. Chui, M. B. Curtis, and B. J. Pike, “How Does an Audit or a Forensic Perspective Influence Auditors’ Fraud-Risk Assessment and Subsequent Risk Response?,” Audit. A J. Pract. Theory, vol. 41, no. 4, pp. 57–83, Nov. 2022, doi: 10.2308/AJPT-19-125.

S. Shakir and Ghulam Abbas, “Role of Forensic Auditing in Enhancing the Efficiency of Public Sector Organization,” Rev. Manag. Sci., vol. 2, no. 2, pp. 40–59, Dec. 2020, doi: 10.53909/rms.02.02.030.

S.-J. Yu and J.-S. Rha, “Research Trends in Accounting Fraud Using Network Analysis,” Sustainability, vol. 13, no. 10, p. 5579, May 2021, doi: 10.3390/su13105579.

H. Naderi, Y.-H. Yang, P. B. Munroe, S. E. Petersen, M. Westwood, and N. Aung, “Health data science course for clinicians: Time to bridge the skills gap?,” Perfusion, Oct. 2024, doi: 10.1177/02676591241291946.

T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated Learning: Challenges, Methods, and Future Directions,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 50–60, May 2020, doi: 10.1109/MSP.2020.2975749.

J. Bertomeu, E. Cheynel, E. Floyd, and W. Pan, “Using machine learning to detect misstatements,” Rev. Account. Stud., vol. 26, no. 2, pp. 468–519, Jun. 2021, doi: 10.1007/s11142-020-09563-8.

F. J. Ekaputra et al., “Semantic-enabled architecture for auditable privacy-preserving data analysis,” Semant. Web, vol. 15, no. 3, pp. 675–708, May 2024, doi: 10.3233/SW-212883.

L. H. Blix, M. A. Edmonds, and K. B. Sorensen, “How well do audit textbooks currently integrate data analytics,” J. Account. Educ., vol. 55, p. 100717, Jun. 2021, doi: 10.1016/j.jaccedu.2021.100717.

T. (Sophia) Sun, “Applying Deep Learning to Audit Procedures: An Illustrative Framework,” Account. Horizons, vol. 33, no. 3, pp. 89–109, Sep. 2019, doi: 10.2308/acch-52455.

D. Appelbaum, D. S. Showalter, T. Sun, and M. A. Vasarhelyi, “A Framework for Auditor Data Literacy: A Normative Position,” Account. Horizons, vol. 35, no. 2, pp. 5–25, Jun. 2021, doi: 10.2308/HORIZONS-19-127.

A. Zhang, S. Deng, D. Cui, Y. Yuan, and G. Wang, “An Experimental Evaluation of Anomaly Detection in Time Series,” Proc. VLDB Endow., vol. 17, no. 3, pp. 483–496, Nov. 2023, doi: 10.14778/3632093.3632110.

Y. Chen and Z. Wu, “Financial Fraud Detection of Listed Companies in China: A Machine Learning Approach,” Sustainability, vol. 15, no. 1, p. 105, Dec. 2022, doi: 10.3390/su15010105.

M. N. Ashtiani and B. Raahemi, “Intelligent Fraud Detection in Financial Statements Using Machine Learning and Data Mining: A Systematic Literature Review,” IEEE Access, vol. 10, pp. 72504–72525, 2022, doi: 10.1109/ACCESS.2021.3096799.

J. Vanhoeyveld, D. Martens, and B. Peeters, “Value-added tax fraud detection with scalable anomaly detection techniques,” Appl. Soft Comput., vol. 86, p. 105895, Jan. 2020, doi: 10.1016/j.asoc.2019.105895.

S. Wang, “Intelligent BiLSTM-Attention-IBPNN Method for Anomaly Detection in Financial Auditing,” IEEE Access, vol. 12, pp. 90005–90015, 2024, doi: 10.1109/ACCESS.2024.3420243.

S. Hong, H. Seo, and M. Yoon, “Data Auditing for Intelligent Network Security Monitoring,” IEEE Commun. Mag., vol. 61, no. 3, pp. 74–79, Mar. 2023, doi: 10.1109/MCOM.003.2200046.

J. Ruan, Z. Yan, B. Dong, Q. Zheng, and B. Qian, “Identifying suspicious groups of affiliated-transaction-based tax evasion in big data,” Inf. Sci. (Ny)., vol. 477, pp. 508–532, Mar. 2019, doi: 10.1016/j.ins.2018.11.008.

W. Didimo, L. Grilli, G. Liotta, L. Menconi, F. Montecchiani, and D. Pagliuca, “Combining Network Visualization and Data Mining for Tax Risk Assessment,” IEEE Access, vol. 8, pp. 16073–16086, 2020, doi: 10.1109/ACCESS.2020.2967974.

M. Savić, J. Atanasijević, D. Jakovetić, and N. Krejić, “Tax evasion risk management using a Hybrid Unsupervised Outlier Detection method,” Expert Syst. Appl., vol. 193, p. 116409, May 2022, doi: 10.1016/j.eswa.2021.116409.

N. Visitpanya and T. Samanchuen, “Synthesis of Tax Return Datasets for Development of Tax Evasion Detection,” IEEE Access, vol. 11, pp. 48203–48220, 2023, doi: 10.1109/ACCESS.2023.3276761.

T. Matos et al., “Leveraging feature selection to detect potential tax fraudsters,” Expert Syst. Appl., vol. 145, p. 113128, May 2020, doi: 10.1016/j.eswa.2019.113128.

J. Alm and A. Malézieux, “40 years of tax evasion games: a meta-analysis,” Exp. Econ., vol. 24, no. 3, pp. 699–750, Sep. 2021, doi: 10.1007/s10683-020-09679-3.

Y. Lin et al., “TaxThemis : Interactive Mining and Exploration of Suspicious Tax Evasion Groups,” IEEE Trans. Vis. Comput. Graph., vol. 27, no. 2, pp. 849–859, Feb. 2021, doi: 10.1109/TVCG.2020.3030370.

Y. Gao, B. Shi, B. Dong, Y. Wang, L. Mi, and Q. Zheng, “Tax Evasion Detection with FBNE-PU Algorithm Based on PnCGCN and PU Learning,” IEEE Trans. Knowl. Data Eng., pp. 1–1, 2021, doi: 10.1109/TKDE.2021.3090075.

E. L. Neuman and R. J. Sheu, “Big Data Analytics in IRS Audit Procedures and Its Effects on Tax Compliance: A Moderated Mediation Analysis,” J. Am. Tax. Assoc., vol. 44, no. 2, pp. 97–113, Sep. 2022, doi: 10.2308/JATA-2020-038.

Downloads

Published

2024-12-11

How to Cite

Sitti Jam’iah, A. indrianti ismunandar, Syamsuddin, S., & Amiruddin, A. (2024). AUDIT FORENSIK BERBASIS DATA ANALYTICS: INOVASI DALAM MENGIDENTIFIKASI KECURANGAN DI ERA DIGITAL. Journal of Innovation Research and Knowledge, 4(7), 4865–4878. Retrieved from https://mail.bajangjournal.com/index.php/JIRK/article/view/9158

Issue

Section

Articles