ANTIBACTERIAL AND ANTIFUNGAL ACTIVITY OF BIOACTIVE COMPOUND FROM SEMELE CORDIFORMIS
Keywords:
Antibacterial, Antifungal, Candida Albicans,, Semele Cordiformis, Staphylococcus AureusAbstract
Marine biodiversity of South East Sulawesi has been used by local communities for medication since a long time ago. One of which is Semele cordiformis or ‘tude bombang’ in local languages. The community believes that the hot water extract of S. cordifirmis can help to cure hepatitis. But this has not been proven scientifically. The purpose of this study is to evaluated antibacterial and antifungal activity of S. Cordiformis as a pilot project to explore the bioactivity of this biota. Method: Antibacterial activity was measured based on the Minimum Inhibitory Concentration (MIC) of S. cordiformis ethanol extract against Staphylococcus aureus ATCC 25923. Paper disks containing the extracts of S. cordiformis in several concentrations were placed on agar and the inhibition zones were measured. Antifungal activity was also measured based on the MIC of the S. cordiformis ethyl acetate extract against Candida albicans ATCC 10231. Each measurement is carried out in triplo. Result: Ethanol extract of S. cordiformis with concentrations of 50% and 100% showed strong inhibition responses (12.25 mm and 16.42 mm).Concentrations of S. cordiformis Ethyl acetate extract of 3000 mg/mL and 6000 mg/mL have moderate inhibition responses (9.58 mm and 5.42 mm). Conclusion: Semele cordiformis used in this study have potency as an antibacterial and antifungal. Further invastigation involving isolation of more specific bioactive compound of the extract need more research
References
Pinto, A. L., Fernandes, M., Pinto, C., Albano, H., Castilho, F., Teixeira, P., & Gibbs, P. A. (2009). Characterization of anti-Listeria bacteriocins isolated from shellfish: potential antimicrobials to control non-fermented seafood. International journal of food microbiology, 129(1), 50-58.
Gerwick, W. H. (1987). Drugs from the sea: The search continues. Journal of Pharmacy Technology, 3(4), 136-141.
Kim, S. K., & Wijesekara, I. (2010). Development and biological activities of marine-derived bioactive peptides: A review. Journal of Functional foods, 2(1), 1-9.
Anjum, K., Abbas, S. Q., Akhter, N., Shagufta, B. I., Shah, S. A. A., & Hassan, S. S. U. (2017). Emerging biopharmaceuticals from bioactive peptides derived from marine organisms. Chemical biology & drug design, 90(1), 12-30..
Sudayasa, I. P., & Lawenga, R. H. (2017). Hubungan Pengetahuan dan Sikap dengan Pemanfaatan Sumberdaya Hayati Laut Untuk Kesehatan Masyarakat Pesisir Kecamatan Soropia. MEDULA, 3(2).
Nurjanah, N., Izzati, L., & Abdullah, A. (2011). Aktivitas antioksidan dan komponen bioaktif kerang pisau (Solen spp). ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 16(3), 119-124.
Djajanegara, I., & Wahyudi, P. (2009). Pemakaian sel HeLa dalam uji sitotoksisitas fraksi kloroform dan etanol ekstrak daun Annona squamosa. Jurnal Ilmu Kefarmasian Indonesia, 7(1), 7-11.
Seleghim, M. H., Lira, S. P., Kossuga, M. H., Batista, T., Berlinck, R. G., Hajdu, E., ... & Pimenta, E. F. (2007). Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates. Revista Brasileira de Farmacognosia, 17(3), 287-318.
Bruneton, J. Farmacognosia, 2nd ed.; Acribia: Zaragoza Spain, 2008; ISBN 978-1-84585-006-7
Kuramoto, M., Arimoto, H., & Uemura, D. (2004). Bioactive alkaloids from the sea: a review. Marine drugs, 2(1), 39-54.
Evans WC. Alkaloids. In: Evans WC, editor. Trease and Evans’s pharmacognosy. 16th ed. Edinburgh, UK: Elsevier; 2009. p. 353–415
Robbers JE, Speedie MK, Tyler VE. Alkaloids. In: Robbers JE, Speedie MK, Tyler VE, editors. Pharmacognosy and pharmacobiotechnology. London, UK: Williams and Wilkins; 1996. p. 144–85.
Kittakoop, P., Mahidol, C., & Ruchirawat, S. (2014). Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Current topics in medicinal chemistry, 14(2), 239-252.
Merken, H. M., & Beecher, G. R. (2000). Measurement of food flavonoids by high-performance liquid chromatography: a review. Journal of Agricultural and Food chemistry, 48(3), 577-599.
Xiao, J., & Kai, G. (2012). A review of dietary polyphenol-plasma protein interactions: characterization, influence on the bioactivity, and structure-affinity relationship. Critical reviews in food science and nutrition, 52(1), 85-101.
Tsao, R., & Yang, R. (2003). Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography. Journal of Chromatography A, 1018(1), 29-40.
Tsao, R., & Yang, R. (2003). Optimization of a new mobile phase to know the complex and real polyphenolic composition: towards a total phenolic index using high-performance liquid chromatography. Journal of Chromatography A, 1018(1), 29-40.
Cushnie, T. T., & Lamb, A. J. (2011). Recent advances in understanding the antibacterial properties of flavonoids. International journal of antimicrobial agents, 38(2), 99-107.
Cook, N. C., & Samman, S. (1996). Flavonoids: Chemistry, metabolism, cardioprotective effects and dietary sources. Nutritional Biochemistry 7, 66-76..
Goiris, K., Muylaert, K., Voorspoels, S., Noten, B., De Paepe, D., E Baart, G. J., & De Cooman, L. (2014). Detection of flavonoids in microalgae from different evolutionary lineages. Journal of phycology, 50(3), 483-492.
Zeng, L. M., Wang, C. J., Su, J. Y., Li, D., Owen, N. L., Lu, Y., ... & Zheng, Q. T. (2001). Flavonoids from the red alga Acanthophora spicifera. Chinese Journal of Chemistry, 19(11), 1097-1100
Klejdus, B., Lojková, L., Plaza, M., Šnóblová, M., & Štěrbová, D. (2010). Hyphenated technique for the extraction and determination of isoflavones in algae: Ultrasound-assisted supercritical fluid extraction followed by fast chromatography with tandem mass spectrometry. Journal of Chromatography A, 1217(51), 7956-7965.
Choi, N. H., Jang, J. Y., Choi, G. J., Choi, Y. H., Jang, K. S., Nguyen, V. T., ... & Kim, J. C. (2017). Antifungal activity of sterols and dipsacus saponins isolated from Dipsacus asper roots against phytopathogenic fungi. Pesticide biochemistry and physiology, 141, 103-108.
Khan, M. I., Ahhmed, A., Shin, J. H., Baek, J. S., Kim, M. Y., & Kim, J. D. (2018). Green Tea Seed Isolated Saponins Exerts Antibacterial Effects against Various Strains of Gram Positive and Gram Negative Bacteria, a Comprehensive Study In Vitro and In Vivo. Evidence-Based Complementary and Alternative Medicine, 2018.
Grabowska, K., Wróbel, D., Żmudzki, P., & Podolak, I. (2018). Anti-inflammatory activity of saponins from roots of Impatiens parviflora DC. Natural product research, 1-5.
Yıldırım, I., & Kutlu, T. (2015). Anticancer agents: saponin and tannin. Int. J. Biol. Chem, 9, 332-340.
Dourmashkin, R. R., Dougherty, R. M., & Harris, R. J. C. (1962). Electron microscopic observations on Rous sarcoma virus and cell membranes. Nature, 194(4834), 1116.
Bangham, A. D., & Horne, R. W. (1962). Action of saponin on biological cell membranes. Nature, 196(4858), 952.
Glauert, A. M., Dingle, J. T., & Lucy, J. A. (1962). Action of saponin on biological cell membranes. Nature, 196(4858), 953.
Riguera R (1997) Isolating bioactive compounds from marineorganisms.Journal of Marine Biotechnology5, 187 – 193.
Yoshiki Y, Kudou S & Okubo K (1998) Relationship betweenchemical structures and biological activities of triterpenoid saponins from soybean (Review). Bioscience Biotechnology and Biochemistry 62, 2291 – 2299.
Okwu, D. E. (2001). Evaluation of the chemical composition of medicinal plants belonging to Euphorbiaceae. Pak Vet J, 14, 160-162.
Pernet, F., Malet, N., Pastoureaud, A., Vaquer, A., Quéré, C., & Dubroca, L. (2012). Marine diatoms sustain growth of bivalves in a Mediterranean lagoon. Journal of sea research, 68, 20-32.