THE DEVELOPMENT DYNAMIC OF HIV/AIDS IN LAMPUNG USING NONLINEAR DIFFERENTIAL EQUATION MODEL OF SIR (SUSCEPTIBLE, INFECTIOUS, AND RECOVERED)

Authors

  • Dorrah Azis Department of Mathematics, Faculty of Mathematics and Natural Science, Lampung University
  • Agus Sutrisno Department of Mathematics, Faculty of Mathematics and Natural Science, Lampung University
  • Ruby T Department of Mathematics, Faculty of Mathematics and Natural Science, Lampung University
  • Handoko Department of Mathematics, Faculty of Mathematics and Natural Science, Lampung University

Keywords:

Basic Reproductive Number, HIV/AIDS, Stability, SIR Model

Abstract

This study discusses the dynamics of the development of HIV/AIDS in Lampung using SIR nonlinear differential equation model.  The data is used on the number of people of HIV/AIDS and the number of residents in Lampung in 2016-2017 from the Central Bureau of Statistics and Ministry of Health Republic of Indonesia Diseases Prevention Directorate. Stability analysis results based on the eigen values of the Jacobian matrix obtained disease free equilibrium point is  that are semi stable due to the threshold phenomenon with eigen values  and .  The basic reproductive number of HIV/AIDS in Lampung at 90,313.  These results indicate the HIV/AIDS epidemic will cause within a period of up to 100 years into the future.

References

Braun, M. 1983. Differential Equations and Their Applicatons. Springer Verlag, London.

Giesecke, J. 1994. Modern Infectious Disease Epidemiologi. Oxford University, New York.

Murray, J.D. 2002. Mathematical Biology: An Introduction. 3rd Edition. Springer Verlag, New York.

Tjolleng, Amir. 2013. Dinamika Perkembangan HIV/AIDS di Sulawesi Utara Menggunakan Model Persamaan Diferensial Nonlinear SIR (Susceptible, Infectious & Recovered). Jurnal Ilmiah Sains. 13:4-7.

Tu, P.N.V. 1994. Dynamical System: An Introduction with Applications in Economics and Biology. Springer Verlag, New York.

Meyer, W. J. 1984. Concepts of Mathematical Modeling, McGraw-Hill, Inc, New York.

Panvilov, A. 2004. Qualitative Analysis of Differential Equation. Utrecht University, Utrecht.

Perko, L. 1991. Differential Equations and Dynamical System. Springer-Verlag Berlin Heidelberg, New York.

Wiggins, S. 1990. Introduction to Applied Nonlinear Dynamical System and Chaos. Springer Verlag, New York.

Downloads

Published

2024-04-29

How to Cite

Dorrah Azis, Agus Sutrisno, Ruby T, & Handoko. (2024). THE DEVELOPMENT DYNAMIC OF HIV/AIDS IN LAMPUNG USING NONLINEAR DIFFERENTIAL EQUATION MODEL OF SIR (SUSCEPTIBLE, INFECTIOUS, AND RECOVERED). Journal of Innovation Research and Knowledge, 3(11), 2223–2230. Retrieved from https://mail.bajangjournal.com/index.php/JIRK/article/view/7672

Issue

Section

Articles